EASTERN SHORE AGRICULTURAL RESEARCH & EXTENSION CENTER

ACCOMACK & NORTHAMPTON COUNTY COOPERATIVE EXTENSION OFFICES

IN THIS ISSUE:

- <u>Message From</u> <u>the Director</u>
- <u>Agents Corner</u>
- <u>Winter Wheat</u> Q&A
- <u>What's That</u> <u>Bug?</u>
- <u>Contact Us</u>
- <u>Extension Pub-</u> <u>lication—SPES-</u> <u>200NP</u>

ARCH 202

ith over 8 inches of rain last month, it's been difficult to get in the field to apply nitrogen. We have received many calls and emails from growers with questions and concerns and wanted to share the Q & A session with our Stalk readers (<u>cont. on page 3</u>).

From The Director

pring is around the corner and field preparation is well underway. You still have time to take soil samples and send them for processing at Virginia Tech or your favorite private lab. If you need soil testing kits for Virginia Tech, we have boxes at both Accomack and Northampton Extension offices and here at the Eastern Shore AREC. You can find the fillable soil test form at: https://tinyurl.com/7vwjb234 (VCE publica-

tion SPES-174NP). The best way to send soil samples is via UPS from the Eastern Shore as this delivery service remains relatively local along the route and samples are delivered directly to the VT Soil Testing Lab versus the campus mail delivery system. We also have a new publication that you can use if you are interested in applying secondary macronutrients and micronutrients to your small grain crops.

Check out SPES-200NP: <u>https://tinyurl.com/n372xymn</u>. Let us know if you have any questions!

PAGE 2

Agents Corner

he General Assembly concluded on March 1, 2021 and we wanted to highlight some of the bills that directly affect your operations.

Legislation passed that, in its original form, would prohibit any person from applying an aerosolized neonicotinoid insecticide for personal use unless the person (i) is certified or under the direct supervision of a certified applicator or (ii) provides 24-hour notice to the owner of any managed beehive within the line of sight of the application area. There were concerns about the bill and how it would restrict farmers' ability to use critical crop protectants. The Senate chose to

Unonla & Theresa.

convert the bill to a study on ways commercial applicators and beekeepers can improve communication to prevent impacts on pollinators. Aerosolized neonicotinoid insecticides can be applied for 2021 growing season.

Legislation failed that would have removed the exemption for farm workers from Virginia's minimum wage law, as well as the exemption for visa-holding migrant workers. For 2021, the farm worker minimum wage exemption is still in place.

Legislation passed that allows a locality to adopt an ordinance to require the removal of clutter from property, or may, whenever the governing body deems it necessary, after reasonable notice, have such clutter removed by its own agents or employees. The bill defines "clutter" as including mechanical equipment, household furniture, containers, and similar items that may be detrimental to the well-being of a community when they are left in public view for an extended period or are allowed to accumulate. For 2021, the "clutter" definition does not apply to land zoned for agriculture or inactive farming.

The State Budget passed and included the following amendments:

- Additional \$30 million for agricultural BMPs and technical assistance to the Governor's total of \$35 million dollars for a total of \$65 million
- Additional \$750,000 funding for matching grants from localities for local purchase of development rights programs to bring the total to \$1,000,000
- \$75,000 for the beehive grant program for a total of \$200,000
- Language to create a workgroup to look at a nutrient credit trading program and its impact on loss of farmland
- \$100,000 for ongoing internet costs at ARECs and county extension offices and \$900,000 for additional agent positions
- \$1.55 million for information technology upgrades at local offices and ARECs and \$2.45 million for equipment at ARECs

We appreciate the work of Farm Bureau and The VA Agribusiness Council who lobbied on agriculture's behalf during the General Assembly. Without their hard work, farming operations in 2021 would be facing increased regulation on everything from minimum wage for farm workers, agricultural "clutter" and insecticide applications.

THE STALK

Winter Wheat Nitrogen Applications

Questions?

Contact Dr. Mark Reiter (mreiter@vt.edu) or Dr. Wade Thomason (wthomaso@vt.edu) t's finally drying out a bit and farmers are back in the fields. Some producers have not applied any nitrogen to wheat at this point. As always, we recommend following Mark Alley's publication for winter wheat nitrogen applications (<u>https://</u> <u>www.pubs.ext.vt.edu/424/424-026/424-026.html</u>). But, depending on what the producer has done so far this year, we have had these questions:

- <u>How much N should I apply?</u> We really only have enough growing season left for around 90 to 100 lbs. N/acre to be utilized. More than this is probably not needed.
- How do I figure out a rate? The best bet is a tissue test. Use Fig. 5 from VCE 424-026.
- <u>Can you give me a rate without doing a tissue test?</u> Try to gauge the current crop's N use so far. Take a look at figure 4 from pub VCE 424-026 using tiller counts and add that to the expected 60 lbs. N/acre second split to figure an applicate rate (i.e. 90 tillers/sq. ft. = 20 lbs. N/acre + 60 lbs. N/acre = 80 lbs. N/acre application rate).
 - <u>Is this wheat worth saving?</u> On March 1, count the wheat tillers within a 1 square foot area. If you have at least 50 tillers, the wheat has enough plant population to have decent yields. If less than 50 tillers per 1 square foot, consider killing the crop as a cover crop as yields will be low.

in a split based on tiller density measurements

Figure 5. N rate recommendations for the second application in a split or a single late application based on tissue N content at growth stage 30.

The Entomology Department at the Eastern Shore AREC invites you enter March's "What's That Bug?" contest. Each month a new insect needs your correct identification. Email responses to <u>hdoughty@vt.edu</u> for your chance to win a prize!

> *Quick tip, you can also email Hélène pictures of your pests to identify!

FEBRUARY'S BUG

Did you guess a squash vine borer? Click <u>here</u> to learn more about this common cucurbit pest!

Eastern Shore Agricultural Research

and Extension Center

- 33446 Research Dr.
- Painter, VA 23420
- Phone: 757-807-6586
- Fax: 757-414-0730

https://www.arec.vaes.vt.edu/arec/eastern-shore.html

The Virginia Tech, Eastern Shore AREC is committed to supporting commercial vegetable, grain, oilseed, and fiber production throughout the Commonwealth of Virginia. Centrally located on Virginia's Eastern Shore, the center conducts basic and applied research on more than 25 agricultural crops.

If you are a person with a disability and desire any assistive devices, services or other accommodations to participate in any activity, please contact Lauren Seltzer at 757-807-6586* (*TDD number is (800) 828-1120) during business hours of 7:30 a.m. and 4:00 p.m. to discuss accommodations.

ESAREC & VCE Contact Information

ESAREC Faculty	Email	Work Phone	Cell Phone		Title
Mark S. Reiter	<u>mreiter@vt.edu</u>	757/807-6576	757/693-2556	Director/A	ssociate Professor, CSES
Vijay Singh	<u>v.singh@vt.edu</u>	757/807-6579	479/713-0094	Assistant F	Professor, Weed Science
ESAREC Staff	Email	Phone			Title
James Custis	jcustis@vt.edu	757/807-6596		Farm Manager	
Hélène Doughty	<u>hdoughty@vt.edu</u>	757/807-6592	757/999-0780	Research S	Specialist, Entomology
Thomas Hines	<u>thhines@vt.edu</u>	757/807-6580		Research S	Specialist, Weed Science
John Mason	<u>masonje@vt.edu</u>	757/807-6582		Research S	Specialist, CSES
Lauren Peyton Seltzer	<u>mlpeyton@vt.edu</u>	757/807-6586	757/710-5701	Executive S	Secretary
Joy Zuchel	<u>jzuchel@vt.edu</u>	757/807-6583	757/710-1761	Research S	Specialist, FST
VCE Faculty	Email	Phone	Address		Title
Ursula Deitch	<u>ursula@vt.edu</u>	757/678-7946	16392 Courthouse Road Eastville, VA 23347		ANR Agent, Northampton County
Theresa Pittman	<u>tpittman@vt.edu</u>	757/787-1361	23203 Front Accomac, V		ANR Agent, Accomack County

Virginia Cooperative Extension programs and employment are open to all, regardless of age, color, disability, gender, gender identity, gender expression, national origin, political affiliation, race, religion, sexual orientation, genetic information, veteran status, or any other basis protected by law. An equal opportunity/affirmative action employer. Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperative. To Jones, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg, VA 24061, United States; M. Ray McKinnie, Administrator, 1890 Extension Program, Virginia State University, Petersburg, VA, United States.

Virginia Cooperative Extension Virginia Tech • Virginia State University

Common Fertilizers Used in Virginia: Secondary and Micronutrients

Authored by Mark Reiter, Associate Professor and Extension Soils and Nutrient Management Specialist, Eastern Shore Agricultural Research and Extension Center, Virginia Tech

Introduction

Secondary macronutrients are used in relatively large quantities by plants for optimal growth and are sulfur (S), calcium (Ca), and magnesium (Mg). Micronutrients on the other hand are needed in much smaller quantities than both primary and secondary macronutrients; however, micronutrients are still essential for plant growth. Often, soils in Virginia contain enough micronutrients and fertilizer amendments are not warranted. Micronutrients include iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), boron (B), chloride (Cl), molybdenum (Mo), cobalt (Co), sodium (Na), silicon (Si), selenium (Se), nickel (Ni), and Vanadium (V) (Havlin et al, 1996). Soil pH plays a large role in soil availability of secondary and micronutrients; therefore, proper soil testing and lime amendments are necessary to ensure adequate nutrient solubility within the soil system. Visit the Virginia Tech Soil Testing Lab website for additional publications and resources regarding proper soil sampling techniques and recommendations at: https://www.soiltest.vt.edu/. This publication will outline some possible secondary macronutrient fertilizer sources. However, numerous formulations and blends are available from many different companies and dealers. Regardless of product or source used, read the product's label carefully and follow all recommendations for foliar and/or soil application.

Fertilizer Material	Chemical Formula	Nutrient Percent	Other Nutrients (%)
Calcium sources		% Ca	
Calcitic lime	CaCO ₃	31.7	
Calcium nitrate	Ca(NO ₃) ₂	21.0	15% N
Dolomitic lime	CaCO ₃ ·MgCO ₃	21.5	11.4% Mg
Gypsum	CaSO4·2H2O	22.5	16.8% S
Hydrated lime	Ca(OH) ₂	46.1	
Marl	CaCO ₃	24.0	
Polyhalite	K2SO4·MgSO4·2CaSO4· 2H2O	12.0	14% K ₂ O, 19% S, 4% Mg
Superphosphate, normal	Ca(H ₂ PO ₄) ₂	18-21	16-20% P ₂ O ₅
Superphosphate, triple	Ca(H2PO4)2	13-15	44-48% P ₂ O ₅
Sulfur sources		% S	
Ammonium sulfate	(NH4)2SO4	24	21% N
Ammonium thiosulfate	(NH4)2S2O3	26	12% N

Table 1. Common fertilizer sources used in Virginia for secondary macronutrient and micronutrient applications.

Fertilizer Material	Chemical Formula	Nutrient Percent	Other Nutrients (%)
Gypsum	CaSO4·2H2O	16.8	22.5% Ca
Polyhalite	K2SO4·MgSO4·2CaSO4·2H2O	19	14% K ₂ O, 19% S, 4% Mg, 12% Ca
Potassium magnesium sulfate	K2SO4-2MgSO4	22.0	22% K ₂ O, 11% Mg
Potassium sulfate	K2SO4	17-20	48-54% K2O
Potassium thiosulfate	K2S2O3	17	25% K ₂ O
Sulfur, elemental	S	90-100	
Urea-sulfur	CO(NH ₂) ₂ +S	10-20	36-40% N
Urea-ammonium nitrate, sulfur blend	Various	3-5	24-28% N
Zinc sulfate	ZnSO4·H2O	17.8	36.4% Zn
Magnesium sources		% Mg	
Dolomitic lime	MgCO ₃ ·CaCO ₃	11.4	21.5% Ca
Epsom salt	MgSO4·7H2O	9.6	13% S
Magnesia	MgO	55.0	
Polyhalite	K2SO4·MgSO4·2CaSO4·2H2O	4	14% K2O, 19% S, 12% Ca
Potassium magnesium sulfate	K ₂ SO ₄ ·2MgSO ₄	11.2	22% K ₂ O, 22% S
Boron Sources		% B	
Borax	Na2B4O7·10H2O	11.3	
Sodium octaborate, Borate 65	Na2B8O13-4H2O	20-21	
Sodium pentaborate	Na2B10O16-10H2O	18	
Sodium tetraborate, Borate 46	Na2B4O7·5H2O	14-15	
Boric acid	H ₃ BO ₃	17.0	
Boron frits	Frit	2-11	
Solubor	Na2B4O7·5H2O + Na2B10O16·10H2O	20-21	
Molybdenum sources		% Mo	
Ammonium molybdate	(NH4)6M07O24·2H2O	54	7% N
Molybdenum frits	Frit	1-30	
Molybdenum trioxide	MoO ₃	66	
Sodium molybdate	Na2MoO4·2H2O	39	
Copper ammonium phosphate	Cu(NH4)PO4·H2O	32	7.2% N, 36.5% P ₂ O ₅
Copper chelates	NaCuHEDTA	9	

Fertilizer Material	Chemical Formula	Nutrient Percent	Other Nutrients (%)
Copper sources		% Cu	
Copper chelates	Na ₂ CuEDTA	13	
Copper frits	Frit	40-50	
Copper sulfate	CuSO4·5H2O	25.5	12.8% S
Manganese sources		% Mn	
Manganese chelate	MnEDTA	12	
Manganese frits	Frit	10-35	
Manganese oxide	MnO	41-68	
Manganese sulfate	MnSO4·4H2O	26-28	14.4% S
Zinc sources		% Zn	
Zinc carbonate	ZnCO ₃	52	
Zinc chelates	NaZnHEDTA	9	
Zinc chelates	Na ₂ ZnEDTA	14	
Zinc oxide	ZnO	78	
Zinc phosphate	Zn3(PO4)2	51	18.4% P ₂ O ₅
Zinc sulfate	ZnSO4·H2O	35	17.9% S
Iron Sources		% Fe	
Iron ammonium phosphate	Fe(NH4)PO4·H2O	29	7.5% N, 38% P ₂ O ₅
Iron ammonium polyphosphate	Fe(NH4)HP2O7	22	5.6% N, 57% P2O5
Iron chelates	NaFeEDTA	5-14	
Iron chelates	NaFeEDDHA	6	
Iron chelates	NaFeDTPA	10	
Iron frits	Frit	30-40	
Iron sulfate, Ferrous sulfate	FeSO4·7H2O	19	11.5% S

References

Alley, M.M. 2000. "Part VIII: Fertilizers." *Agronomy Handbook*. Publication 424-100. Virginia Cooperative Extension, Blacksburg.

Gowariker, V. 2009. "*The Fertilizer Encyclopedia*." John Wiley & Son, Inc., Hoboken, New Jersey. Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 1999. "*Soil Fertility and Fertilizers, 6th Edition*."

Prentice Hall, Upper Saddle River, New Jersey.

- International Plant Nutrition Institute. 2015. "Boron." Last Accessed April 8, 2020. http://anz.ipni.net/article/ANZ-3234
- International Plant Nutrition Institute. 2019. "Nutrient Source Specifics." Last Accessed April 3, 2020. http://www.ipni.net/specifics-en
- Sirius Minerals, LTD. 2019. "POLY4 Granular Product Specification Sheet." Last Accessed April 2, 2020. https://www.poly4.com/site/assets/files/1224/granular_specification_sheet_-_october_19.pdf

Binford, G.D. 2006. "Chapter 8: Commercial Fertilizers." The Mid-Atlantic Nutrient Management Handbook.

Publication MAWP-0602. Last Accessed April 3, 2020. https://extension.psu.edu/programs/nutrient-management/educational/nutrient-management-general/mid-atlantic-nutrient-management-handbook

Acknowledgements

Funding for this work was provided in part by the Virginia Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, US Department of Agriculture.

Visit Virginia Cooperative Extension: ext.vt.edu

Virginia Cooperative Extension programs and employment are open to all, regardless of age, color, disability, gender, gender identity, gender expression, national origin, political affiliation, race, religion, sexual orientation, genetic information, veteran status, or any other basis protected by law. An equal opportunity/affirmative action employer. Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperating. Edwin J. Jones, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg; M. Ray McKinnie, Administrator, 1890 Extension Program, Virginia State University, Petersburg.

2020

SPES-200NP